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Solution 11

1. Determine which of the following sets are dense, open dense, nowhere dense, of first cate-
gory and residual in R (you may draw a table):

(a) A = {n/2m : n,m ∈ Z},
(b) B, all irrational numbers,

(c) C = {0, 1, 1/2, 1/3, · · · } ,
(d) D = {1, 1/2, 1/3, · · · } ,
(e) E = {x : x2 + 3x− 6 = 0 } ,
(f) F = ∪k(k, k + 1), k ∈ N ,

Solution. (a) A is dense, not open, not nowhere dense, of first category and not residual.

(b) B is dense, not open, not nowhere dense, of second category and residual.

(c) C is not dense, not open (closed in fact), nowhere dense, of first category and not
residual.

(d) D is not dense, not open (not closed), nowhere dense, of first category and not residual.

(e) E is the finite set {(−3 +
√

33)/2, (−3−
√

33)/2}. It is not dense, not open (closed in
fact), nowhere dense, of first category and not residual.

(e) F is dense, open, not nowhere dense, of second category and residual.

Sets Dense Open dense Nowhere dense First category Residual

A X 7 7 X 7

B X 7 7 7 X
C 7 7 X X 7

D 7 7 X X 7

E 7 7 X X 7

F X X 7 7 X

2. Determine which of the following sets are dense, open dense, nowhere dense, of first cate-
gory and residual in C[0, 1] (you may draw a table):

(a) A, all polynomials whose coefficients are rational numbers,

(b) B, all polynomials,

(c) C = {f :
∫ 1
0 f(x)dx 6= 0} ,

(d) D = {f : f(1/2) = 1 } .

Solution. (a) A is dense (and countable too), not open, not nowhere dense, of first
category, and not residual.

(b) B is dense (and uncountable), not open, not nowhere dense, of first category and not
residual. ( B can be expressed as the countable union of Pn where Pn is the set of all
polynomials of degree not exceeding n. Each Pn is closed and nonwhere dense.)

(c) C is dense, open, not nowhere dense, of second category, and residual.

(d) D is not dense, not open (closed in fact), nowhere dense, of first category, and not
residual.
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Sets Dense Open dense Nowhere dense First category Residual

A X 7 7 X 7

B X 7 7 X 7

C X X 7 7 X
D 7 7 X X 7

3. Use Baire category theorem to show that transcendental numbers are dense in the set of
real numbers.

Solution. A number is called algebraic if it is a root of some polynomial with integer
coefficients and it is transcendental otherwise. Let A be all algebraic numbers and T be
all transcendental numbers so that R = A ∪ T . We know that A is a countable set {aj}.
Thus let An = {a1, · · · , an} and we have T = ∩nR \ An. As each R \ An is a dense, open
set, T is a residual set and therefore dense by Baire Category Theorem.

4. A set E in a metric space is called a perfect set if, for each point x ∈ E and r > 0, the
ball Br(x)

⋂
E contains a point different from x.

(a) For each x in the perfect set E, there exists a sequence in E consisting of infinitely
many distinct points converging to x.

(b) Every complete perfect set is uncountable. Hint: Use Baire Category Theorem.

(c) Is (b) true without completeness?

Solution. (a). For each n ≥ 1, as (B1/n(x) \ {x})
⋂
E is nonempty, we pick a point from

it to form {xn}. Obviously, there are infinitely many distinct points in this sequence and
it converges to x as n→∞.

(b). Assume on the contrary that the perfect set E is countable, E = {an}, n ≥ 1. We
have E =

⋃∞
n=1{an}. Obviously every {an} is a closed set. On the other hand, every ball

containing an must contain some points different from an. We conclude that every {an}
is a closed set with empty interior. However, by assumption, (E, d) is a complete metric
space. By Baire Category Theorem E cannot have such decomposition. Therefore, it must
be uncountable.

Note. Applying to R, it gives another proof that R is uncountable.

(c). No. Simply consider Q under the Euclidean metric. It is a countable perfect set which
is not complete. Think of the Cauchy sequence {3, 3.1, 3.14, 3.141, 3.1415, 3.14159, · · · }
which is in Q but converges to π.

5. Let ‖ · ‖ be a norm on Rn.

(a) Show that ‖x‖ ≤ C‖x‖2 for some C where ‖ · ‖2 is the Euclidean metric.

(b) Deduce from (a) that the function x 7→ ‖x‖ is continuous with respect to the Euclidean
metric.

(c) Show that the inequality ‖x‖2 ≤ C ′‖x‖ for some C ′ also holds. Hint: Observe that
x 7→ ‖x‖ is positive on the unit sphere {x ∈ Rn : ‖x‖2 = 1} which is compact.

(d) Establish the theorem asserting any two norms in a finite dimensional vector space
are equivalent.

Solution. (a). Let x = a1e1 + · · ·+ anen. By Cauchy-Schwarz Inequality

‖x‖ = ‖
∑
k

akek‖ ≤
∑
k

|ak| ‖e‖k ≤ C‖x‖2 ,
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where

C =

√∑
k

‖ek‖2 .

(b). Let xn → x in ‖ · ‖2, that is, ‖xn − x‖2 → 0. By (a), ‖xn − x‖ → 0 too.

(c). The map x 7→ ‖x‖ is continuous and positive on the unit sphere. As the sphere is
compact, it has a positive lower bound, that is, ‖x‖ ≥ ρ > 0 whenever ‖x‖2 = 1. Now,
given any non-zero vector x, x/‖x‖2 belong to the unit sphere, so∥∥∥∥ x

‖x‖2

∥∥∥∥ ≥ ∥∥∥∥ x

‖x‖2

∥∥∥∥
2

≥ ρ .

(d). Let ‖·‖a and ‖·‖b be two norms on the finite dim space V . Fix a basis {v1, · · · , vn} in
V . Every vector x has a unique representation x =

∑n
k=1 akvk. The map x 7→ (a1, · · · , an)

is a linear bijection (linear isomorphism) from V to Rn. It induces two norms on Rn by
‖a‖a = ‖

∑
k akvk‖a and ‖a‖b = ‖

∑
k akvk‖b (using the same notations). From (c) both

are equivalent to the Euclidean norm, hence they are also equivalent to each other. Going
back to V , we conclude that they are equivalent too.

6. Let F be a subset of C(X) where X is a complete metric space. Suppose that for each
x ∈ X, there exists a constant M depending on x such that |f(x)| ≤ M, ∀f ∈ F . Prove
that there exists an open set G in X and a constant C such that supx∈G |f(x)| ≤ C for
all f ∈ F . Suggestion: Consider the decomposition of X into the sets Xn = {x ∈ X :
|f(x)| ≤ n, ∀f ∈ F}.
Solution. By assumption, X =

⋃
nXn. It is clear that each Xn is closed. By the

completeness of X we appeal to Baire Category Theorem to conclude that there is some
n1 such that Xn1 has non-empty interior, call it G. Then |f(x)| ≤ n1, ∀x ∈ G, for all
f ∈ F .

7. Optional. A function is called non-monotonic if if is not monotonic on every subinterval.
Show that all non-monotonic functions form a dense set in C[a, b]. Hint: Consider the sets

En = {f ∈ C[a, b] : ∃x such that (f(y)− f(x))(y − x) ≥ 0, ∀y, |y − x| ≤ 1/n}.

Solution. We will show that each En is closed and . Let fk → f uniformly and xk satisfy
(fk(y) − fk(xk))(y − xk) ≥ 0 for y ∈ [xk − 1/n, xk + 1/n]. By passing to a subsequence,
one may assume xk → x0. Then∣∣fk(y)− fk(xk)− (f(y)− f(xk))

∣∣ ≤ |fk(y)− f(y)|+ |f(xk)− fk(xk)| ≤ 2‖fk − f‖∞ → 0,

which shows that

(f(y)− f(x0))(y − x0) = lim
k→∞

(f(y)− f(xk))(y − xk) = lim
k→∞

(fk(y)− fk(xk))(y − xk) ≥ 0,

hence En is closed. Next, if En has non-empty interior, we can find some f ∈ En such that
all functions in Bε(f) are in En. Pick a polynomial p in Bε/2(f). We claim that there exists
some g, ‖p − g‖∞ ≤ ε/2, does not belong to En. But ‖f − g‖∞ < ε, contradiction holds.
Let ϕ be the jig-saw function that is described in our notes such that ϕ([a, b]) = [−1, 1]
and slope equal to a large number ±K and consider g = p+ ε/2ϕ. Let x ∈ [a, b] and y > x
close to x, we have

(g(y)−g(x))(y−x) = (p(y)−p(x)+
ε

2
(ϕ(y)−ϕ(x))(y−x) ≤ (L(y−x)+

ε

2
(ϕ(y)−ϕ(x)))(y−x).
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(L is a Lipschitz constant for p.) By the definition of ϕ, we can always choose some y close
to x from the right and K so large that L(y − x) + ε/2(ϕ(y)− ϕ(x)) < 0.

It shows that En is . Similarly, let

Fn = {f ∈ C[a, b] : ∃x such that (f(y)− f(x))(y − x) ≤ 0, ∀y, |y − x| ≤ 1/n}.

Then En is closed and for all n. Let the collection of all non-monotonic functions be
N . Since a function is non-monotonic if it is either increasing or decreasing on some
subinterval, we have

N =
⋂
n

(
C[a, b] \ En ∪ Fn

)
.

By Baire’s theorem, N is a residual set and hence dense. The proof here is similar but
simpler to the proof that continuous, nowhere differentiable functions form a residual set.


